El Mitsubishi F-2 cumple 30 años

El Mitsubishi F-2 cumple 30 años

El 7 de octubre de 1995 tuvo lugar el vuelo inaugural del Mitsubishi F-2 Viper Zero. Ese mismo año, el gobierno japonés aprobó un pedido de 141 unidades (que pronto se redujo a 130) para entrar en servicio en 1999.

Por problemas presupuestarios, los pedidos se redujeron a 98 (incluidos cuatro prototipos) en 2004. La Agencia de Defensa de Japón realizó pruebas de vuelo de los cuatro prototipos en el aeródromo de Gifu. El último de los 94 aviones de producción encargados se entregó al Ministerio de Defensa el 27 de septiembre de 2011.

General Electric, Kawasaki, Honeywell, Raytheon, NEC, Hazeltine y Kokusai Electric se encontraban entre los principales subcontratistas de componentes. Lockheed Martin suministró el fuselaje trasero, los slats de borde de ataque, el sistema de gestión, un gran porcentaje de los cajones de ala y otros componentes. Kawasaki construyó la sección media del fuselaje, así como las puertas de la rueda principal y el motor, mientras que el fuselaje delantero y las alas fueron construidos por Mitsubishi.

Parte de la aviónica fue suministrada por Lockheed Martin, y el sistema digital de vuelo Fly-by-Wire fue desarrollado conjuntamente por Japan Aviation Electric y Honeywell. Los contratistas de sistemas de comunicación e interrogadores IFF incluyeron a Raytheon, NEC, Hazeltine y Kokusai Electric. El radar de control de tiro, el IRS, la computadora de misión y el sistema EW fueron desarrollados por Japón.

Además, la computadora de control de vuelo, las leyes de control de vuelo y el software relacionado fueron prácticamente todos desarrollados e integrados por Japón. El ensamblaje final fue realizado en Japón por MHI en sus instalaciones Komaki-South en Nagoya.

Las alas más grandes proporcionan a la aeronave una mejor carga útil y maniobrabilidad en proporción a su empuje, pero también tienden a aumentar el peso de la estructura. Para aligerar las alas, el revestimiento, los largueros, las costillas y la tapa de las alas se fabricaron con un compuesto de grafito y epoxi. Esta fue la primera aplicación de esta tecnología en un caza táctico de producción.

Mitsubishi utilizó el diseño existente del F-16 como guía de referencia para su trabajo de diseño, y más del 95% de los planos de ingeniería del F-16 se modificaron para el F-2.

La JASDF consideró desarrollar un reemplazo de diseño y producción japonesa para el antiguo caza Mitsubishi F-1 ya en 1981. Un estudio de viabilidad formal comenzó en 1985. Se inició el trabajo en el programa FS-X, inicialmente designado por la compañía como Mitsubishi SX-3.

En 1984, General Dynamics ofreció una versión ampliada del F-16 a la Fuerza Aérea de los Estados Unidos y consideró presentarla como una alternativa de bajo costo en la competencia de Cazas Tácticos Avanzados. Ninguna de las dos opciones se materializó; sin embargo, este concepto se convirtió en el punto de partida para el desarrollo del F-2. El F-2 tiene un diseño de ala más grande, similar al del Agile Falcon, pero gran parte de su electrónica se actualizó según los estándares de la década de 1990.

Vuela el prototipo sin motores del He-280

Vuela el prototipo sin motores del He-280

El 22 de septiembre de 1940 el primer prototipo del Heinkel 280 comenzó las pruebas de planeo, equipado con módulos lastrados en lugar de motores, remolcado por un He 111.

Pasaron otros seis meses antes de que Fritz Schäfer volara el segundo prototipo por sus propios medios, el 30 de marzo de 1941. Tras aterrizar, Schäfer informó a Heinkel que, si bien era algo difícil controlarlo durante los virajes, un piloto experimentado lo tendría fácil para volar el He 280.

El 5 de abril de 1941, Paul Bader realizó un vuelo de exhibición ante varios oficiales nazis, entre ellos Ernst Udet, el general ingeniero Lucht, Reidenbach, Eisenlohr y otros. Heinkel recibió la aprobación de para continuar el desarrollo de turbinas. Una ventaja del He 280 que impresionó a los líderes políticos alemanes fue que los motores a reacción podían quemar queroseno, un combustible que requería mucho menos gasto y refinación que el combustible de alto octanaje utilizado por los aviones con motor de pistón

Durante el año siguiente, el progreso fue lento debido a los continuos problemas con los motores. Un segundo diseño de motor, el HeS 30, también estaba en desarrollo. Mientras tanto, se consideraron motores alternativos, incluyendo el pulsorreactor Argus As 014 que impulsaba la bomba volante V-1.

A finales de 1942, el tercer prototipo estaba equipado con versiones perfeccionadas del motor HeS 8 y estaba listo para su siguiente demostración. El 22 de diciembre, se organizó un simulacro de combate aéreo para los oficiales del RLM, en el que el He 280 se enfrentó a un caza Focke-Wulf Fw 190 de pistón. El avión demostró su velocidad enormemente superior, completando cuatro vueltas a un circuito ovalado antes de que el Fw 190 pudiera completar tres. El RLM se interesó y realizó un pedido de 20 aviones de prueba de preproducción, a los que seguiría un lote de 300 aviones de producción estándar.

Los problemas de motor continuaron afectando al proyecto. Durante 1942, el RLM ordenó a Heinkel abandonar el trabajo en el HeS 8 y el HeS 30 para centrar todo el desarrollo en un motor sucesor, el HeS 011, que resultó ser un diseño más avanzado y problemático.

Mientras tanto, el primer prototipo del He 280 fue reequipado con pulsorreactores y remolcado para probarlos. El mal tiempo provocó que el avión se congelara antes de que se pudieran probar los pulsorreactores; esta situación llevó al piloto Helmut Schenk a convertirse en la primera persona en utilizar un asiento eyectable. Si bien el asiento funcionó a la perfección, el avión se perdió.

Como no se esperaba que el HeS 011 estuviera disponible durante un tiempo, Heinkel seleccionó el motor rival, el BMW 003; sin embargo, este motor también sufrió problemas y retrasos. En consecuencia, el segundo prototipo del He 280 fue reequipado con Junkers Jumo 004.

El 27 de marzo, Erhard Milch, Inspector General de la Luftwaffe, ordenó a Heinkel que abandonara el trabajo en el He 280 para centrar la atención de su compañía en el desarrollo y la construcción de bombarderos.

El WindRunner podría estar disponible en 2030

El WindRunner podría estar disponible en 2030

La compañía estadounidense Radia confirmó que diseñará y construirá el WindRunner, el avión de carga militar más grande del mundo, destinado a ser utilizado por las fuerzas estadounidenses y de la OTAN.

El nuevo avión de transporte pretende superar las flotas actuales de transporte pesado en tamaño y capacidad de carga útil, ofreciendo un mayor alcance para la logística militar y las misiones humanitarias. La iniciativa subraya la creciente cooperación transatlántica en materia de defensa en un momento de creciente preocupación por la seguridad mundial.

Radia afirma que la aeronave utilizará componentes certificados y probados, con un plan de desarrollo que busca lograr su primer vuelo para finales de la década y el inicio de sus operaciones alrededor de 2030. El tipo de motor aún no se ha revelado públicamente, pero se dice que es un modelo certificado existente en proceso de integración.

La financiación recaudada hasta la fecha ha sido de aproximadamente 150 millones de dólares, y se están negociando nuevas inversiones con gobiernos y entidades privadas. Los analistas del sector han expresado su preocupación por los riesgos técnicos y comerciales, como el corto alcance en comparación con otros aviones de transporte, la competencia de posibles dirigibles híbridos y las conversaciones sobre la reanudación de la producción del C-17. Radia sostiene que existe demanda de múltiples soluciones dada la ausencia de grandes aviones de transporte en producción.

En mayo de 2025, Radia firmó un acuerdo de cooperación en investigación y desarrollo con el Comando de Transporte de EEUU para estudiar aplicaciones de carga de gran tamaño. El Departamento de Defensa carece de capacidad de transporte aéreo para carga de más de 90 metros de longitud. Los países de la OTAN que participan en el programa de la Solución Internacional de Transporte Aéreo Estratégico también han expresado su interés.

Las características militares específicas, como el reabastecimiento en vuelo, podrían añadirse posteriormente, pero la prioridad es desplegar la aeronave para 2030 y cumplir con los requisitos identificados. El WindRunner comenzó como un proyecto civil destinado a transportar palas de aerogeneradores de más de 100 metros de longitud para la iniciativa GigaWind de Radia. La destrucción del An-225 en 2022, el fin de la producción de otros grandes refuerzan la relevancia del programa.

El programa está vinculado a conceptos como el Empleo Ágil de Combate y el despliegue distribuido, que requieren el rápido despliegue de fuerzas en zonas dispersas con infraestructura limitada. Radia posiciona la versión militar como una forma de apoyar las flotas existentes de aviones de transporte estratégico que siguen operativos pero que están fuera de producción, como el Lockheed C-5 Galaxy y el Boeing C-17 Globemaster III, a la vez que aumenta la capacidad para misiones con gran volumen de operaciones.

La capacidad interna del WindRunner supera los 6.800 metros cúbicos, equivalente aproximadamente a siete veces el espacio de carga de un C-5 y doce veces el de un C-17. Este espacio está diseñado para permitir la entrega continua de equipo listo para la misión sin necesidad de cargadores especializados ni instalaciones a medida.

El WindRunner podría transportar seis helicópteros CH-47 Chinook completamente ensamblados, mientras que un C-17 solo puede transportar uno después del desmontaje. También podría transportar cuatro CV-22 Osprey a áreas avanzadas, cuatro aviones de combate F-16 o F-35C sin necesidad de reabastecimiento en vuelo, y hasta doce helicópteros Apache en una sola salida, en comparación con los dos de un C-17.

Radia también destaca el apoyo a las operaciones espaciales, incluyendo la capacidad de mover cohetes propulsores en horas en lugar de días y de recuperar vehículos de carga de cohetes aterrizados para su reutilización. Al transportar los sistemas intactos, la aeronave está diseñada para reducir las horas totales de vuelo, la complejidad operativa y la exposición a interrupciones o ataques.

Los requisitos operativos del WindRunner incluyen la capacidad de operar desde pistas sin pavimentar de aproximadamente 1800 metros, lo que permite el acceso a ubicaciones dispersas, austeras o dañadas por tormentas que las aeronaves convencionales de gran tamaño no pueden utilizar.

Las especificaciones técnicas del WindRunner «normal» son de 108 metros de longitud, 80 metros de envergadura y 24 metros de altura, con una velocidad de crucero planificada de Mach 0,6, aproximadamente 740 kilómetros por hora. La carga útil máxima ronda los 72.575 kilogramos, inferior a la de aeronaves de carga pesada históricas como el Antonov An-225 Mriya, con 247.000 kilogramos; el An-124, con 150.000 kilogramos; o el C-5 Galaxy, con 129.274 kilogramos.

Sin embargo, el volumen de la bodega de carga es mayor que el de cualquier aeronave existente; en materiales anteriores se citan hasta 7.702 metros cúbicos en la configuración civil. El alcance máximo de carga útil del WindRunner es de 2000 kilómetros, menor que el de aeronaves como el Airbus A330 MRTT, el Kawasaki C-2, el Xi’an Y-20 o el A400M.

Vuela el X-32, competidor del F-35 en el programa JSF

Vuela el X-32, competidor del F-35 en el programa JSF

El 18 de septiembre de 2000 se produjo el primer vuelo del X-32A, desde la planta de Boeing en Palmdale hasta la Base Aérea Edwards. El avión, pilotado por el piloto de pruebas de Boeing, Fred Knox, recorrió 670 m de pista antes de despegar a 150 nudos alrededor de las 8:00 a. m.

Poco después del despegue, se detectó una pequeña fuga hidráulica y el vuelo se acortó de los 30 a 40 minutos previstos a 20 minutos. Durante el vuelo, el avión alcanzó los 3000 m, una velocidad de 370 km/h y un ángulo de ataque de 13°. A pesar de la reducción del vuelo, se completó aproximadamente el 80 % de los puntos de prueba planificados. Estaba propulsado por un derivado convencional del turbofán con postcombustión del F-22, designado F119-PW-614C.

El 29 de marzo de 2001, la versión STOVL del X-32B realizó su primer vuelo. El vuelo duró 50 minutos, desde Palmdale hasta la Base de la Fuerza Aérea Edwards. Una versión modificada del motor -614C, conocida como F119-PW-614S, propulsaba la aeronave STOVL.

El 26 de octubre de 2001, el Departamento de Defensa anunció que el Lockheed Martin X-35 había ganado el concurso JSF. El X-35 se convertiría en el Lockheed Martin F-35 Lightning II, que se fabricaría en serie.

La pérdida del contrato JSF a manos de Lockheed Martin en 2001 supuso un duro golpe para Boeing, ya que representaba el proyecto internacional de aviones de combate más importante desde el concurso del programa Lightweight Fighter de las décadas de 1960 y 1970. En aquel momento, la producción del JSF se estimaba entre 3.000 y 5.000 unidades.

En 1993, la Agencia de Proyectos de Investigación Avanzada de Defensa (DARPA) lanzó el proyecto CALF (Common Affordable Lightweight Fighter). El objetivo del proyecto era desarrollar un diseño furtivo que reemplazara todos los cazas y aviones de ataque más ligeros en servicio en Estados Unidos. Casi al mismo tiempo, se inició el proyecto JAST (Joint Advanced Strike Technology) En 1994, el Congreso de los Estados Unidos ordenó su fusión en un solo programa bajo el nombre de JAST, que pasó a denominarse Joint Strike Fighter (JSF) en 1995.

Muchas empresas participaron en la primera fase de este proyecto, que consistió en la elaboración de diseños conceptuales de aeronaves para su presentación al Departamento de Defensa. El 16 de noviembre de 1996, Boeing y Lockheed Martin obtuvieron contratos para la producción de dos aviones de demostración conceptual (CDA) cada uno.

Una importante diferencia con respecto a proyectos anteriores fue la prohibición de que las compañías utilizaran fondos propios para financiar el desarrollo. Cada una recibió 750 millones de dólares para producir sus dos aviones, incluyendo aviónica, software y hardware. Esta limitación promovió la adopción de técnicas de fabricación y ensamblaje de bajo coste, y también evitó que Boeing y Lockheed Martin se declararan en quiebra en un intento por ganar un concurso tan importante.

El Vulcan de ULA lanza un satélite experimental para el Pentágono.

El Vulcan de ULA lanza un satélite experimental para el Pentágono.

El nuevo cohete Vulcan de United Launch Alliance lanzó el Satélite de Tecnología de Navegación-3 desde Cabo Cañaveral, Florida, este martes. Es el primer satélite de navegación experimental del Pentágono en casi 50 años, con el objetivo de probar nuevas tecnologías que podrían definir futuros programas militares de GPS.

Esta ha sido la primera misión de seguridad nacional que vuela con el nuevo cohete de carga pesada Vulcan de ULA. El lanzamiento del cohete se retrasó debido a problemas de desarrollo y retrasos en la certificación, después de que se desprendiera material de uno de los propulsores sólidos durante su segundo vuelo en octubre.

Vulcan debía lanzar cuatro misiones de la Fuerza Espacial el año pasado, pero se redujeron a dos y se pospusieron para este año. La compañía planea lanzar dos veces al mes, con una combinación de cohetes Vulcan y Atlas, para finales de año, ante la presión de superar la acumulación de misiones debido a los retrasos de Vulcan. El lanzamiento del martes es el primero de 25 lanzamientos que la Fuerza Espacial ha ordenado a ULA en la segunda fase del programa de Lanzamiento Espacial de Seguridad Nacional.

El satélite experimental lanzado, probará nuevas señales anti-spoofing, una antena orientable de matriz en fase para enviar señales a las fuerzas terrestres en zonas de alta interferencia y receptores que le permitirán operar sin instrucciones de los controladores terrestres. El Pentágono y el AFRL invirtieron alrededor de 250 millones de dólares en el desarrollo del satélite NTS-3 y el sistema terrestre. L3Harris fue el contratista principal del programa.

El programa busca fortalecer la resiliencia de la constelación GPS militar, pero también allanar el camino para nuevas capacidades de posicionamiento, navegación y cronometraje. La mayoría de los satélites PNT del servicio se encuentran en órbita terrestre media, pero el NTS-3 se enviará a la órbita geoestacionaria para experimentar con diferentes posicionamientos para la misión.

El equipo espera comenzar a recopilar datos en unas pocas semanas, y la misión completa durará aproximadamente un año. AFRL no planea utilizar el satélite en operaciones reales después de que finalice el año, pero están trabajando con varias organizaciones para analizar cómo podrían utilizar las capacidades restantes para realizar pruebas adicionales.

AeroVironment desplegara seis helicópteros autónomos en Marte

AeroVironment desplegara seis helicópteros autónomos en Marte

AeroVironment de Arlington, Virginia, y el Laboratorio de Propulsión a Chorro de la NASA presentaron «Skyfall», un concepto para desplegar helicópteros marcianos de próxima generación que podrían allanar el camino para el aterrizaje humano en Marte mediante la exploración aérea autónoma. AeroVironment ha iniciado inversiones internas y la coordinación con el Laboratorio de Propulsión a Chorro de la NASA para facilitar un posible lanzamiento de Skyfall en 2028.

Skyfall está diseñado para desplegar seis helicópteros de exploración en Marte, donde explorarían los sitios seleccionados por la NASA y la industria, como los principales candidatos para el aterrizaje de los primeros astronautas marcianos estadounidenses.

La «Maniobra Skyfall» permitiría que los seis dispositivos se soltaran de su cápsula de entrada durante su inmersión en la atmósfera marciana. Considerado como un concepto de ahorro de costos, Skyfall eliminaría la necesidad de una plataforma de aterrizaje, que en el pasado ha sido uno de los elementos más costosos, complejos y arriesgados de cualquier misión a Marte, afirma AeroVironment.

Tras el despliegue, cada helicóptero operaría de forma independiente. Entre sus funciones se incluirían la transmisión de imágenes de alta resolución de la superficie a la Tierra, así como la recopilación de datos de radar sobre lo que se esconde bajo la superficie rocosa del Planeta Rojo. Esta información es clave para el aterrizaje seguro de las tripulaciones en zonas de la superficie marciana que albergan agua, hielo y otros recursos.

El programa Skyfall se basa en el programa de helicópteros Ingenuity para Marte en el cráter Jezero. Realizó 72 vuelos en poco menos de tres años y logró el primer vuelo propulsado en otro mundo el 19 de abril de 2021.

En palabras de William Pomerantz, director de proyectos espaciales de AeroVironment. “Con seis helicópteros, Skyfall ofrece una solución de bajo costo que multiplica el alcance, los datos recopilados y la investigación científica realizada, acercando significativamente la primera huella de la humanidad en Marte”, afirmó.

Comienzo oficial de la Operación Paperclip

Comienzo oficial de la Operación Paperclip

El Estado Mayor Conjunto (JCS) de los Estados Unidos estableció el primer programa secreto de reclutamiento, denominado Operación Overcast, el 20 de julio de 1945, inicialmente para «ayudar a acortar la guerra contra Japón y apoyar nuestra investigación militar de posguerra». El término «Overcast» fue el nombre que dieron los familiares de los científicos alemanes al campamento donde estuvieron recluidos en Baviera. A finales del verano de 1945, el JCS creó el JIOA, un subcomité de la Comunidad de Inteligencia Conjunta (JCI), para supervisar directamente la Operación Overcast y, posteriormente, la Operación Paperclip.

La iniciativa comenzó en serio en 1945, cuando los Aliados avanzaron hacia Alemania y descubrieron un gran talento científico e investigación avanzada que había contribuido a los avances tecnológicos alemanes en tiempos de guerra. La operación fue ejecutada principalmente por agentes especiales del Cuerpo de Contrainteligencia (CIC) del Ejército de los Estados Unidos. Muchos científicos seleccionados participaron en el programa de cohetes nazi, la aviación o la guerra química/biológica. Al año siguiente, la Unión Soviética llevó a cabo un programa similar, denominado Operación Osoaviakhim, que se centró en muchos de los mismos campos de investigación.

La operación, caracterizada por el reclutamiento de especialistas alemanes y sus familias, reubicó a más de 1600 expertos en Estados Unidos. Se ha valorado en 10 000 millones de dólares estadounidenses en patentes y procesos industriales. Entre los reclutas se encontraban figuras tan notables como Wernher von Braun, un destacado científico en tecnología de cohetes.

Von Braun y más de mil de sus colegas decidieron rendirse a los estadounidenses. Uno de los ingenieros recordó posteriormente sus opciones: «Despreciamos a los franceses, les tenemos un miedo mortal a los soviéticos, no creemos que los británicos puedan permitirse el lujo de mantenernos. Así que solo nos quedan los estadounidenses». El 20 de junio de 1945, se desplazaron desde el este, acercándose a las fuerzas estadounidenses, para evitar el avance del ejército soviético.

La operación no se centró únicamente en la cohetería, también se dirigieron a los combustibles sintéticos, la medicina y otros campos de investigación. Los notables avances en aeronáutica impulsaron tecnologías de cohetes y vuelos espaciales cruciales en la carrera espacial. La operación desempeñó un papel crucial en el establecimiento de la NASA y el éxito de las misiones Apolo a la Luna.

El 26 de abril de 1946, el Estado Mayor Conjunto emitió la directiva JCS 1067/14 al general Eisenhower instruyéndole a «preservar de la destrucción y tomar bajo su control registros, planos, libros, documentos, papeles, archivos e información científica, industrial y de otro tipo y datos pertenecientes a organizaciones alemanas dedicadas a la investigación militar», con excepción de los criminales de guerra y los científicos alemanes que sean detenidos con fines de inteligencia según sea necesario.

A finales de 1945, tres grupos de científicos de cohetes llegaron a Estados Unidos para trabajar en Fort Bliss, Texas, y en el Campo de Pruebas de White Sands, Nuevo México, como «Empleados Especiales del Departamento de Guerra».

En 1946, la Oficina de Minas de Estados Unidos empleó a siete científicos alemanes especializados en combustibles sintéticos en una planta química Fischer-Tropsch en Luisiana, Misuri.

A principios de 1950, se tramitó la residencia legal en Estados Unidos para algunos de los especialistas del Proyecto Paperclip a través del consulado estadounidense en Ciudad Juárez, Chihuahua, México. Así, científicos alemanes ingresaron legalmente a Estados Unidos desde Latinoamérica.

Entre 1945 y 1952, la Fuerza Aérea de los Estados Unidos patrocinó el mayor número de científicos de Paperclip, importando a 260 hombres, de los cuales 36 regresaron a Alemania y uno, Walter Schreiber, emigró a Argentina.

La Operación Paperclip formó parte de una estrategia más amplia de Estados Unidos para aprovechar el talento científico alemán ante las tensiones emergentes de la Guerra Fría y garantizar que esta experiencia no cayera en manos de la Unión Soviética ni de otras naciones. El legado de la operación ha seguido siendo controvertido en las décadas posteriores.

Para mas información: https://shapingupfutures.net/2020/04/20/estados-unidos-captura-el-lfa-lleno-de-tesoros-cientificos/

La DARPA cancela el proyecto Liberty Lifter

La DARPA cancela el proyecto Liberty Lifter

La DARPA (Defense Advanced Research Projects Agency) norteamericana, acaba de cancelar el proyecto Liberty Lifter, un hidroavión de carga pesada, de largo alcance y bajo costo que usara el efecto Ala en Tierra (WIG), en el que había invertido 98 millones de dólares. El primer Liberty Lifter debía despegar en 2028.

Aunque DARPA no ha dado a conocer los motivos de la cancelación, afirma que el programa de desarrollo hasta la fecha había proporcionado información valiosa sobre la aeronave, lo que ayudaría a desarrollar nuevas tecnologías que se introducirían rápidamente en la industria aeroespacial. Según la agencia, los datos de la simulación y la creación de nuevas técnicas de fabricación serían invaluables para proyectos futuros.

La idea era construir un hidroavión utilizando materiales compuestos avanzados con suficiente alcance y capacidad de carga útil para llevar a cabo misiones logísticas rápidas, además de ayudar en las labores de rescate y socorro en caso de desastre. Utilizando el efecto WIG, que aumenta considerablemente la sustentación a baja altitud al atrapar un colchón de aire bajo las alas, el objetivo era crear una serie de hidroaviones con una capacidad de carga sin precedentes.

Contratado por General Atomics Aeronautical Systems (GA-ASI) y Aurora Flight Sciences, filial de Boeing, el plan consistía en construir primero un avión de demostración del tamaño aproximado de un C-130 Hércules, capaz de elevar 22 600 kg, seguido de una versión de ocho motores de tamaño real, comparable en carga útil a un Boeing C-17 Globemaster III, con una capacidad de 77 000 kg y una autonomía de 12 000 millas náuticas (22 224 km).

Además de su gran tamaño, el Liberty Lifter debía poder despegar y aterrizar en condiciones marítimas de nivel 4 (olas de 1,25 a 2,5 m) y realizar operaciones en el agua en nivel 5 (olas de 2,5 a 4 m). También se suponía que sería un escaparate de nuevos materiales y utilizaría técnicas de construcción naval en lugar de aeronáutica para reducir los costos y acelerar la producción. Producir una aeronave que no requiriera pistas ni puertos de embarque también era atractivo.

1945: se crea SNECMA

1945: se crea SNECMA

El 29 de mayo de 1945 se funda la Societe Nationale d’Etudes et de Construction de Moteurs d’Aviation (SNECMA). Es la heredera del fabricante de mores Gnome & Rhone, que previamente había adquirido otras empresas aeronáuticas. La nueva compañía continuó la producción de los motores de pistón desarrollados por Gnome & Rhône. Sin embargo, estos programas presentaban un notable retraso técnico con respecto a la producción estadounidense y británica.

Al igual que los demás países aliados tras la Segunda Guerra Mundial, Francia reclutó técnicos e ingenieros alemanes, incluyendo un grupo de BMW. Entre ellos se encontraba Hermann Oestrich, quien contribuyó a la modernización de SNECMA. En septiembre de 1945, fue nombrado jefe del taller técnico aeronáutico de Rickenbach, inicialmente ubicado en Lindau, en la zona francesa, y posteriormente trasladado a Decize (Nièvre) en 1946. Esta unidad diseñó los primeros motores turborreactores de la serie ATAR, que equiparon los Mirage de Dassault, entre otros aviones.

La vitalidad de las oficinas de diseño, impulsada por el interés de las autoridades en los aviones de despegue y aterrizaje verticales (VTOL), propició el lanzamiento de dos proyectos: el C400, conocido como el «ATAR Volant», y el Coléoptère, que exploraba las posibilidades del vuelo vertical.

En noviembre de 1962, Bristol Aero Engines (adquirida por Rolls-Royce en 1966) y SNECMA decidieron cofinanciar a partes iguales el desarrollo del turborreactor Olympus 593, que posteriormente propulsaría el avión supersónico Concorde. Otros equipos aeronáuticos fueron suministrados por las empresas que pronto formarían el Grupo Snecma: el sistema de frenos de control eléctrico de Messier y el tren de aterrizaje principal y el regulador de freno de Hispano-Suiza.

En noviembre de 1965, el primer prototipo del Olympus 593 se probó en el banco de pruebas de Villaroche. Al año siguiente, se realizaron pruebas de vuelo del Bombardier británico Avro Vulcan. En marzo de 1969, el Concorde realizó su primer vuelo en Toulouse. Este vuelo marcó el inicio del desarrollo de SNECMA en la aviación civil.

General Electric y SNECMA comenzaron a colaborar por primera vez en 1969. Junto con la empresa alemana MTU (Motoren-und-Turbinen-Union), ambas compañías produjeron piezas para el motor CF6-50, que propulsaba el Airbus A300. En 1974, se creó oficialmente CFM International, una empresa conjunta al 50% entre SNECMA y General Electric, para desarrollar, fabricar y comercializar el motor CFM56. Esta cooperación permitió a SNECMA consolidarse en el sector civil. Entre 1967 y 1970, SNECMA adquirió Turbomeca, Hispano-Suiza y Messier-Bugatti. La primera se centró en la producción de motores para helicópteros, la segunda en transmisiones de potencia e inversores de empuje, y la tercera en trenes de aterrizaje, ruedas y frenos.

En 1969, se constituyó la Société Européenne de Propulsion (SEP) mediante la consolidación de las actividades de la Société d’Etude de la Propulsion par Réaction (SEPR), de la División de Motores Espaciales de SNECMA, y las de Nord-Aviation. Esta empresa de propulsión espacial se encargó del diseño del nuevo lanzador europeo Ariane, cuyo primer lanzamiento tuvo lugar en diciembre de 1979.

En 1984, SNECMA se convirtió en el accionista mayoritario de SEP. En 1987, suministró los motores Viking (producidos inicialmente por SEP en 1973 para las primeras versiones del Ariane) que propulsaron el Ariane 4. A partir de 1988, el motor Vulcain, otra creación de SEP desarrollada por SNECMA, propulsó el Ariane 5. SEP fue absorbida definitivamente por Snecma en 1997, y el negocio aeroespacial se convirtió en una actividad independiente de la empresa hasta la creación de ArianeGroup (una empresa conjunta al 50% entre Safran y Airbus) en 2015.

Con la creación de su filial Sochata-Snecma en 1975, la empresa comenzó a ofrecer a sus clientes servicios de reparación de motores civiles y militares. En la década de 1980, se lanzó un nuevo programa militar para propulsar el avión Rafale de Dassault Aviation: el motor M88. Las pruebas en banco comenzaron a principios de 1989, seguidas de las pruebas de vuelo al año siguiente.

En cuanto al mercado civil, Snecma comenzó a participar en el desarrollo del motor GE90 de General Electric en 1989. La empresa se encargó del diseño y la fabricación de varios módulos, incluyendo todos los compresores, la unidad de control del motor FADEC, el ventilador y el inversor de empuje. Se instaló una forja específica en Gennevilliers para producir álabes de gran tamaño, y se desarrolló un nuevo equipo de pruebas en Villaroche. De hecho, ninguno de los 24 bancos de pruebas de la planta era lo suficientemente grande para albergar este enorme motor.

En el año 2000, se creó un holding con el nombre de Snecma Group para gestionar la totalidad de las acciones de la empresa. Las actividades de propulsión se transfirieron temporalmente a una filial con el nombre de Snecma Moteurs. Con la adquisición de Labinal, el Grupo consolidó aún más su posición en el sector aeroespacial. Ese mismo año también estuvo marcado por la integración de Hurel-Dubois, que permitió a Snecma estructurar sus actividades de producción de góndolas para motores de aviación.

En 2005, la fusión entre Snecma y Sagem dio lugar a la creación de Safran, un grupo industrial especializado en el sector aeroespacial, de defensa y seguridad. Once años después, en 2016, todas las empresas del Grupo se fusionaron bajo un mismo logotipo y sus denominaciones corporativas originales se modificaron para incluir la marca Safran. Snecma, que había recuperado su nombre original en el momento de la fusión, se convirtió así en Safran Aircraft Engines.

India retrasa a 2027 el lanzamiento de sus primeros astronautas

India retrasa a 2027 el lanzamiento de sus primeros astronautas

India vuelve retrasar su programa espacial tripulado. El ministro indio del Espacio, Jitendra Singh, anunció que la Organización de Investigación Espacial de la India (ISRO) tiene como objetivo el primer trimestre de 2027 para su primer lanzamiento de astronautas, originalmente previsto para 2022. La misión estará precedida por tres lanzamientos sin tripulación para mejorar la calificación de la infraestructura de cohetes y tierra.

La primera de estas tres misiones Gaganyaan sin tripulación, conocida como G1 y largamente retrasada, está programada para el cuarto trimestre de este año y transportará un robot llamado Vyomitra (que en sánscrito significa «amigo espacial») para recopilar datos durante el vuelo.

La segunda y la tercera misiones Gaganyaan, G2 y G3, también transportarán a Vyomitra y se lanzarán en 2026. La primera misión tripulada, denominada H1, volará en el primer trimestre de 2027. Los astronautas de la India, o Gaganyatris, para las misiones H1 y H2 fueron seleccionados en febrero de 2024.

Los Gaganyatris se lanzarán en parejas a bordo del H1 y el H2, convirtiendo a India en el cuarto país en lanzar humanos de forma independiente, después de Estados Unidos, la Unión Soviética/Rusia y China. Las misiones los mantendrán en órbita terrestre baja durante unos tres días antes de aterrizar de regreso en la Tierra. Todos se encuentran actualmente en la fase final de entrenamiento.

Las misiones lanzarán la nave espacial india Gaganyaan en un cohete ISRO (Human-rated Launch Vehicle) Mark-3 HLVM3. El vehículo de lanzamiento de cuatro etapas tiene una altura de 43,5 metros, cuenta con dos cohetes propulsores sólidos y una torre de eyección de cápsulas de nuevo diseño para separar a la tripulación y la nave espacial del cohete en caso de emergencia.

Singh también ofreció actualizaciones sobre el desarrollo de la infraestructura de la misión Gaganyaan, incluyendo las interfaces de la plataforma de lanzamiento, un centro de control de misión, contingencias para la evacuación de la tripulación y sistemas de comunicaciones. Entre el hardware de apoyo terrestre y el vehículo de lanzamiento, el desarrollo está completo al 90%, y solo restan las fases finales de calificación.